bilateral composition operators on vector-valued hardy spaces
Authors
abstract
let $t$ be a bounded operator on the banach space $x$ and $ph$ be an analytic self-map of the unit disk $bbb{d}$. we investigate some operator theoretic properties of bilateral composition operator $c_{ph, t}: f ri t circ f circ ph$ on the vector-valued hardy space $h^p(x)$ for $1 leq p leq +infty$. compactness and weak compactness of $c_{ph, t}$ on $h^p(x)$ are characterized and when $p=2$, a concrete formula for its adjoint is given.
similar resources
Bilateral composition operators on vector-valued Hardy spaces
Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$. We investigate some operator theoretic properties of bilateral composition operator $C_{ph, T}: f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq +infty$. Compactness and weak compactness of $C_{ph, T}$ on $H^p(X)$ are characterized an...
full textComposition Operators between Bergman and Hardy Spaces
We study composition operators between weighted Bergman spaces. Certain growth conditions for generalized Nevanlinna counting functions of the inducing map are shown to be necessary and sufficient for such operators to be bounded or compact. Particular choices for the weights yield results on composition operators between the classical unweighted Bergman and Hardy spaces.
full textComposition Operators on Hardy Spaces on Lavrentiev Domains
For any simply connected domain Ω, we prove that a Littlewood type inequality is necessary for boundedness of composition operators on Hp(Ω), 1 ≤ p < ∞, whenever the symbols are finitely-valent. Moreover, the corresponding “little-oh” condition is also necessary for the compactness. Nevertheless, it is shown that such an inequality is not sufficient for characterizing bounded composition operat...
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyPublisher: iranian mathematical society (ims)
ISSN 1017-060X
volume 40
issue 2 2014
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023